- Bolzano, teorema de
- ► MATEMÁTICAS Teorema formulado por B. Bolzano por el cual toda función continua, definida en un intervalo cerrado con valores opuestos en ambos extremos, se anula por lo menos en un punto.
Enciclopedia Universal. 2012.
Enciclopedia Universal. 2012.
Bolzano — ● Bernard Bolzano: Matemático checo. ● Bozen Bolzano: Ciudad y provincia italiana. * * * Bolzano, Bernhard Bolzano, teorema de ► Prov. del NE de Italia, en el Trentino Alto Adigio, junto a Austria y Suiza; 7 400 km2 y 439 358 h. Cap., la c.… … Enciclopedia Universal
Bolzano (desambiguación) — Saltar a navegación, búsqueda Bolzano puede designar: Bolzano (en alemán Bozen), ciudad de Italia; Bernard Bolzano, matemático checo; Teorema de Bolzano; Tirol del Sur, también conocido como Provincia Autónoma de Bolzano. Obtenido de Bolzano… … Wikipedia Español
Teorema de Bolzano-Weierstrass — Para el teorema de análisis real, véase Teorema de Weierstrass. En el análisis real, el teorema Bolzano–Weierstrass es un importante teorema que caracteriza los conjuntos secuencialmente compactos. Contenido 1 Enunciado 2 Demostración … Wikipedia Español
Teorema de Bolzano — Se ha propuesto fusionar este artículo o sección con Teorema del valor intermedio, pero otros wikipedistas no están de acuerdo. Por favor, lee la página de discusión de ambos artículos y aporta tus razones antes de proceder en uno u otro sentido … Wikipedia Español
Teorema del valor intermedio — Para el teorema de cálculo diferencial, véase Teorema del valor medio. Teorema de los valores intermedios. En análisis real el teorema del valor intermedio (o más correctamente teorema de los valores intermedios, o TVI), es un teorema sobre… … Wikipedia Español
Teorema de Tychonoff — En topología, el teorema de Tychonoff establece que el producto de cualquier colección de espacios topológicos compactos es compacto. El teorema se nombró así por Andrey Nikolayevich Tychonoff, quien lo probó por primera vez en 1930 para… … Wikipedia Español
Teorema de Weierstrass — El Teorema de Weierstrass es un teorema de análisis real que establece que una función continua en un intervalo cerrado y acotado (de números reales) alcanza sus valores máximo y mínimo en puntos del intervalo. También se puede enunciar en… … Wikipedia Español
Teorema de Bolzano-Weierstrass — Si una función f(x) está definida y es continua en un intervalo cerrado [a,b], entonces f(x) alcanza al menos un máximo (z) y un mínimo (y) absolutos en el intervalo [a,b]. Es decir: Siendo «x» cualquier valor de la variable perteneciente al… … Enciclopedia Universal
Teorema del valor intermedio — Existen varios teoremas de Análisis Matemático relacionados con un valor intermedio. El más básico de todos ellos es el llamado Teorema de Bolzano cuyo enunciado es el siguiente: Si f(x) es una función continua en el intervalo cerrado [a, b] y el … Enciclopedia Universal
Teorema de Bolzano — Si una función es continua en y los signos de y son diferentes, entonces … Enciclopedia Universal